

Приложение К (справочное)

ОЦЕНКА ВЕЛИЧИНЫ ПРИВЕДЕННОГО СОПРОТИВЛЕНИЯ ТЕПЛОПЕРЕДАЧЕ ОКОННЫХ БЛОКОВ ИЗ ПВХ-ПРОФИЛЕЙ EXPROF

К.1 Основные положения методики расчета

Величину приведенного сопротивления теплопередаче оконного блока с известными (заданными) характеристиками светопрозрачной и непрозрачной частей можно определить расчетным методом согласно СТО СППП 4.3-2013.

В качестве исходных данных для проведения расчета необходимы:

- величина приведенного сопротивления теплопередаче ПВХ-профилей с учетом армирования (принимаются по результатам испытаний или по результатам расчетов с применением компьютерных программ моделирования температурных полей);
- величина сопротивления теплопередаче стеклопакета для центральной термически однородной зоны (принимается по результатам расчета согласно ГОСТ Р 54166-2010 или по справочным данным СТО СППП 4.3-2013);
- характеристика дистанционных рамок стеклопакетов (тип, материал, толщина стенок);
- геометрические размеры оконного блока (длина, ширина, площадь остекления, площадь непрозрачной части).

Величина приведенного сопротивления теплопередаче оконного блока в одинарных переплетах со стеклопакетами $R_{\rm o}^{\rm fn}$ рассчитывается по формуле

$$R_o^{6n} = \frac{F_o^{6n}}{F_{nep}/R_o^{nep} + F_{oct}/R_o^{oct} + \Psi_{oct} \cdot L_{oct}}$$

где F_0^{6n} – общая площадь оконного блока, M^2 ;

 $F_{\text{пер}}$, $F_{\text{ост}}$ – площади соответственно переплетов и остекления, M^2 ;

 $R_o^{\text{пер}}$, $R_o^{\text{ост}}$ – приведенное сопротивление теплопередаче соответственно переплетов и остекления, $M_o^{2,0}$ C/BT;

 $\Psi_{\text{ост}}$ – линейный коэффициент теплопередачи в краевых зонах остекления, BT/(м.°C);

L_{ост} – длина краевых зон, м.

При проведении расчетов величину $\Psi_{\text{ост}}$ следует принимать согласно СТО СППП 4.3-2013 в зависимости от конструктивного решения стеклопакетов, показателя теплотехнической эффективности дистанционных рамок Σ (d· λ), заглубления дистанционных рамок в переплетах.

Геометрические размеры и площади оконных блоков определяются с учетом следующих правил:

- общая площадь оконного блока F_0^{6n} определяется по габаритным размерам;

- площадь остекления $F_{\text{ост}}$ определяется по наименьшим размерам «в свету»;
- длина краевой зоны остекления $L_{\text{ост}}$ принимается равной суммарной длине участков сопряжения остекления с переплетами.

К.2 Пример расчета оконного блока из ПВХ-профилей EXPROF Profecta

Исходные данные:

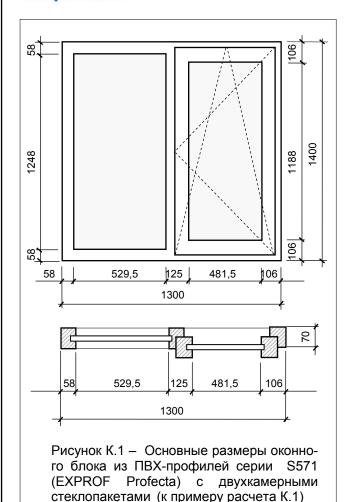
- оконный блок из ПВХ-профилей серии S571 (EXPROF Profecta); коробка S571.01, створка S571.02, импост S571.03;
- заполнение светопрозрачной части двух-камерные стеклопакеты СПД $4M_1$ -14- $4M_1$ -14-4U; внутреннее стекло с мягким низкоэмиссионным покрытием ϵ_1 = 0,04; заполнение межстекольного пространства воздух;
- дистанционные рамки стеклопакетов из алюминиевых сплавов; толщина стенок рамок 0.2 мм; заглубление дистанционных рамок в ПВХ-профилях f = 5 мм;
- коэффициент теплопроводности материала дистанционных рамок λ = 160 BT/(м· $^{\circ}$ C).

Приведенное сопротивление теплопередаче профильной системы по результатам испытаний составляет $R_0^{\text{nep}} = 0.80 \text{ m}^2 \, ^{\circ}\text{C/Bt}$.

В соответствии с исходными данными (см. рисунок К.1): F_o^{6n} = 1,820 м²; F_{oct} = 1,255 м²; F_{nep} = = 0,565 м²; L_{oct} = 6,968 м.

Согласно СТО СППП 4.3-2013 сопротивление теплопередаче центральной зоны стеклопакетов составляет $R_o^{\text{ост}}$ = 0,78 м². °C/Вт.

Рассчитываем величину показателя теплотехнической эффективности дистанционных рамок - Σ (d· λ) = 2(0,0002·160) = 0,064 BT/°C.


По таблице А.2 СТО СППП 4.3-2013 для двухкамерного стеклопакета с дистанционными рамками $\Sigma (d \cdot \lambda) > 0,06$ при заглублении в переплетах f = 5 мм - Ψ_{oct} = 0,065 BT/(м·°C).

Рассчитываем величину приведенного сопротивления теплопередаче оконного блока в целом:

$$R_0^{\text{oK}} = \frac{1,820}{0,565/0,8+1,255/0,78+0,065\cdot6,968} = 0,66 \text{ m}^2 \cdot {}^{\circ}\text{C/Bt}.$$

			-					
							/lucm	
						000 «ЭксПроф»		
Изм.	Кол.уч.	/lucm	№ док.	Подился	Дата		18	

К.3 Пример расчета оконного блока из ПВХ-профилей EXPROF Suprema

Исходные данные:

- оконный блок из ПВХ-профилей серии S670 (EXPROF Suprema); коробка S570.01, створка S570.02, импост S570.03;
- заполнение светопрозрачной части двухкамерные стеклопакеты СПД $4M_1$ -16Ar- $4M_1$ -16Ar- $4M_1$; внутреннее стекло — с мягким низкоэмиссионным покрытием ϵ_1 = 0,04; заполнение межстекольного пространства — аргон;
- дистанционные рамки стеклопакетов из ПВХ («Warmex ThermAl»); толщина стенок рамок 1,0 мм; заглубление дистанционных рамок в ПВХ-профилях f = 10 мм;
- коэффициент теплопроводности материала дистанционных рамок λ = 0,16 Bt/(м. $^{\circ}$ C).

Приведенное сопротивление теплопередаче профильной системы составляет $R_o^{\text{nep}} = 0.81$ м² °C/Bт.

Расчетная схема и основные размеры оконного блока приведены на рисунке К.2: F_o^{6n} = 1,820 м²; F_{oct} = 1,164 м²; F_{nep} = 0,656 м²; L_{oct} = 6,748 м.

Согласно СТО СППП 4.3-2013 сопротивление теплопередаче центральной зоны стеклопакетов составляет $R_o^{\text{ост}}$ = 0,93 м 2 . $^{\circ}$ С/Вт.

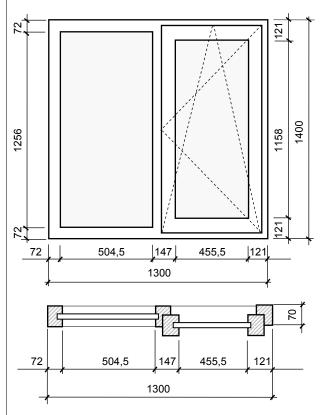


Рисунок К.2 – Основные размеры оконного блока из ПВХ-профилей серии S570 (EXPROF Suprema) с двухкамерными стеклопакетами (к примеру расчета К.2)

Рассчитываем величину показателя теплотехнической эффективности дистанционных рамок: Σ (d· λ) = (2·0,001·0,17 + 0,00002·0,20 + 0.00003·160) = 0.0051 BT/ $^{\circ}$ C.

По таблице А.2 СТО СППП 4.3-2013 для двухкамерного стеклопакета с дистанционными рамками Σ (d· λ) < 0,006 при заглублении в переплетах f = 10 мм – $\Psi_{\text{ост}}$ = 0,025 BT/(м·°C).

Рассчитываем величину приведенного сопротивления теплопередаче оконного блока в целом:

$$R_0^{\text{oK}} = \frac{1,820}{0.656/0.81+1,164/0.93+0.025\cdot6,748} = 0,82 \text{ M}^2 \cdot ^{\circ}\text{C/BT}.$$

Результаты расчета приведенного сопротивления теплопередаче оконных блоков из ПВХ-профилей EXPROF с некоторыми типами стеклопакетов приведены в приложении Л.

Значения нормируемого сопротивления теплопередаче окон и балконных дверей, рассчитанные согласно СП 50.13330.2012 для жилых и общественных зданий ряда климатических районов РФ, представлены в приложении М.

Изм.	Кол.уч.	/lucm	№ док.	Подилсь	Дата